

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Cryptography fundamentals [S2TIIZM1E>PK]

Course

Field of study Year/Semester

Information Technology for Smart and Sustainable 1/1

Mobility

Area of study (specialization) Profile of study

- general academic

Level of study Course offered in

second-cycle English

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other

32 16

Tutorials Projects/seminars

0 0

Number of credit points

4,00

Coordinators Lecturers

dr inż. Anna Grocholewska-Czuryło anna.grocholewska-czurylo@put.poznan.pl

Prerequisites

Knowledge: Basic Discrete Mathematics - including sets, functions, logic, and elementary proof techniques. Elementary Number Theory - especially concepts like divisibility, prime numbers, greatest common divisors, and modular arithmetic. Foundations of Computer Science - such as algorithms, complexity, and basic data structures. Skills: Problem-solving - especially in algorithmic and mathematical contexts. Basic programming - to implement and test cryptographic algorithms (e.g., in Python, C++, or Java). Analytical Thinking - ability to approach complex problems methodically.

Course objective

Leveraging on the symmetric and asymmetric cryptographic algorithms this module will provide the main protocols and techniques implemented on existing and future networks. Last but not least, one course has been allocated for addressing network security management.

Course-related learning outcomes

Knowledge:

The student has knowledge of development trends and the most significant recent achievements in the

field of cryptography

The student has advanced and detailed knowledge of the processes occurring in existing and future

The student demonstrates knowledge of advanced methods, techniques, and tools in particular symmetric and asymmetric cryptographic algorithms, as well as the main protocols and techniques used in existing and future networks

Skills:

The student is able to use information and communication technologies in the field of cryptography. including the application of block and stream ciphers, groups, rings, and finite fields, as well as the AES and RSA algorithms and the Diffie-Hellman protocol

The student is able to plan and conduct experiments, including measurements and computer simulations, interpret the obtained results, draw conclusions, and formulate and verify hypotheses related to complex and simple research problems in the field of cryptography

The student is able to assess the suitability of methods and tools used to solve an engineering task involving the application of cryptography, including recognizing the limitations of these methods and tools

Social competences:

The student understands the importance of using the latest knowledge in cryptography to solve research and practical problems

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Written exam

Practical work - solving problems

Programme content

Modern cryptography, AES and RSA algorithms, Elliptic Curve Cryptography, Modular arithmetic, Hash functions, Quantum cryptography

Course topics

Introduction to modern cryptography principles

Block and stream ciphers

Groups, rings and finite fields.

The AES algorithm

Introduction to number theory: Modular arithmetics. Fermat's and Euler's Theorems. Discrete logarithms.

The Diffie-Hellman protocol

The RSA Algorithm

Elliptic Curve Cryptography Hash functions: SHA standard

Introduction to quantum cryptography

Teaching methods

The course is conducted remotely (online) in a synchronous format. Classes may also be held in person. Multimodal presentation. Practical examples, case study.

Bibliography

Basic:

Stallings, W. (2020), Cryptography and Network Security: Principles and Practices, 8th Edition, Pearson.

Additional:

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	48	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	52	2,00